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ABSTRACT

Previous work in score following has provided methods
for aligning a skilled live performance to a symbolic or
audio score. In the Bayesian framework, ideal generative
models requireO(n) computations at each real time step
wheren is the length of the score. In practice, heuris-
tic thresholds have been used to consider only a subspace
of generative models with high priors conditioned on the
previous state. These heuristics work well for skilled per-
formances but fail when large errors are made by amateur
musicians. We present a novel Priming Particle Filter for
audio scores which places the order-limiting heuristic on a
firm foundation and adds the ability to recover from large
errors by using psychologically-inspired bottom-up prim-
ing in addition to regular sequential importance sampling.

1. INTRODUCTION

Automated score following is the task of listening to a hu-
man performance of a predetermined score and playing a
predetermined accompaniment in real-time which adapts
to tempo changes and errors of the player.

Dannenberg [1] applied Dynamic Time Warping (DTW)
to follow MIDI performances, allowing for insertion and
omission of notes. The DTW path gradient is used to
approximate tempo and hence provide accompaniment.
In real-time, the optimal path is noted at each step and
the search on the next row is constrained to nearby ele-
ments within an arbitrary window. Hence the complexity
at each time point isO(1) rather thanO(n) wheren is the
score length. This approach was extended to audio align-
ment: score and observation audio are cut into frames,
and ‘chroma’ vectors are extracted which shift all pitches
to within a single octave. A distance measure is defined
on pairs of chroma vectors, and used as the local distance
in DTW.

DTW is a likelihood-based approach to alignment. To
perform it exactly requires each incoming live observa-
tion to be dot-producted with every score position, then
the shortest path through this matrix is found. There is no
explicit prior over possible paths: we can consider it flat.
In practice, it is intractable to perform comparisons with

the whole score, so DTW algorithms typically consider
only a fixed window (of perhaps 100 audio frames) about
the previous best point. This can be thought of as speci-
fying a finite plateau transition prior centered around the
previous MAP point. Importantly, this heuristic specifies
not only a prior belief but also acomputationalsimplifi-
cation: it tells us toconsideronly those hypotheses in the
plateau rather than all possible generating score states.

Moving from the plateau prior to an arbitrary state tran-
sition matrix, DTW becomes a general Hidden Markov
Model. Rather than use score audio frames as states (as in
DTW), score-following HMM researchers have tended to
use a reduced model of the score, with one or several states
per note ([2], [3]). Transitions are typically allowed be-
tween consecutive score states, self-transitions, and jumps
to the end of the note, and their parameters fitted to previ-
ous performances.

While HMMs provide explicit prior beliefs about tran-
sitions, they do not address the computational problem of
which beliefs toconsiderin computations. As in DTW,
practical HMMs generally apply some kind of cutoff thresh-
old to limit the space of score states under consideration.
For example, Raphael [5] uses a heuristic which prunes all
but a fixed number of most probable posterior hypotheses
at each time step. These states tend to be closely clus-
tered. This works well for Raphael’s intended users: pro-
fessional performers who are unlikely to make large er-
rors, and whose small-scale tempo deviations from previ-
ous performances can be tracked with high accuracy. But
for amateurs who may make very large leaps around the
piece it runs the risk of becoming irrecoverably lost.

Heuristic hypothesis management is the ‘dirty secret’
of much of Bayesian inference. Particle Filtering [8] is
a more principled approach to hypothesis management in
dynamic Bayesian networks including HMMs. Rather than
keeping the most probable hypotheses, it samples from
them at each time step. This can allow for less probable
paths to be explored in the hope that they may eventually
provide a better global path than locally probable ones.
Particle filtering has been applied to model-based score-
following HMMs by [7]. This allows for larger leaps in
the score than a ‘take only the best’ approach, but it is still
possible for particle filters to become lost (‘diverge’) and



they are then unlikely to recover.

Human musicians do not just rely on a prior informa-
tion to select location hypotheses to consider: hypotheses
can also beprimed[9] bottom-up from observed features.
For example a song may have a distinctive chord change
at the start of a the chorus: when this change is heard, it
primes us to consider that we might be at that location –
even if our prior beliefs were focused elsewhere. Within
the framework of particle filtering, we define priming to
be the injection of new samples into the system driven
only by bottom-up features, regardless of their priors. We
present a novel ‘Priming Particle Filter’ (PPF) which uses
this technique to recover from being lost by recognizing
and allowing a probability for its own error, then creating
new hypotheses based on bottom-up note changes. Unlike
existing HMM score-followers, we have returned to the
DTW-style audio-based score, and avoid the need for ex-
plicit note-based score models. To demonstrate the prim-
ing particle filter we have used relatively simple features
for likelihood computations, but we suggest that the PPF
could be a useful addition to all state-of-the-art score fol-
lowers ([4], [6]) with more advanced features.

2. PARTICLE FILTERING IN HMMS

Hidden Markov Models assume a discrete hidden state
xi[t] at discrete time stepst with linear Markovian transi-
tions,P (xi[t + 1]) =

∑
j P (xi[t + 1]|xj [t])P (xj [t]), to-

gether with observationsP (y[t]) = f(x[t]). The filtering
posterior at each step is given recursively byP (xi[t]|y[1 :
t]) = 1

Z P (y[t]|xi)
∑

j P (xi[t]|xj [t − 1])P (xj |y[1 : t −
1]) where the sum is over all possible hidden states, so
scales with the length of a score. Particle Filters can be
used to approximate the sum by maintaining a limited
set of samples from eachP (x[t]|y[1 : t]). We base our
Priming Particle Filter on a standard particle filtering tech-
nique, Sequential Importance Resampling, whose algo-
rithm is:

for each time stept do
for p = 1 : N do

samplexp[t] ∼ P (xi|xp[t− 1])
end for
for p = 1 : N do

wp[t] := 1
Z wp[t]P (y[t]|xp[t])

end for
if 1PN

p=1(w
p)2

< Nthresh then

resamplexp[t] ∼ P (x[t] = i) = wi[t]
end if

end for

whereN is the number of particles andNthresh is a hand-
set threshold for number of effective particles. The re-
sampling step becomes necessary in the case of degener-
acy (i.e. when most particle weightswp[t] become small).
See [8] for details.

3. SCORE FOLLOWING MODEL

3.1. Tempo model

At each (discrete) frame of live performance timet(l), the
hidden state is the score position in frames,t(s) and the
current tempo. These hidden state variables are modeled
as continuous and are lazily discretized only when a hard
output frame decision is required. We write the score time
as a function of the live time,t(s)[t(l)], and write the cur-
rent tempo aṡt(s)[t(l)]. The hidden state evolves as the
damped switching stochastic process:

t(s)[t(l)] = t(s)[t(l) − 1] + ṫ(s)[t(l) − 1] + εt(s)

ṫ(s)[t(l)] = ρ(ṫ(s)[t(l) − 1] + εṫ(s) − 1) + 1

whereρ is a damping coefficient andεt(s) are from the
GaussianN(0, σt(s)) andε ˙t(s) are from the switching mix-
ture of Gaussiansα1N(0, σṫ(s))+α2N(0, σṫ(s)) with α1+
α2 = 1. The two mixture components model a small
tempo drift due to player or tracking errors and a sepa-
rate large tempo change due to performer style changes.
A mixture is used to encourage occasional, sudden large
changes (e.g. at new phrases) whilst discouraging gradual
large tempo changes (e.g. during notes). We do not per-
form any learning of parameters – they are set by hand.
Particles contain the 2-element state(t(s)[t(l)], ṫ(s)[t(l)]),
i.e. a position and speed in the score.

3.2. Likelihoods

Likelihoods are approximated using chroma features sim-
ilar to [1]. Offline scorey(s) and online livey(l) audio
is sampled at 2756.3Hz (=44.1kHz/16) and cut into 512-
point framesy[t] with 448 point overlaps. The signals
are differentiated to remove linear components then Hann-
windowed and the power FFTs are computed. The total
energye[t] and normalized power FFTY [t] are stored:

Y [t] =
1
Z
|FFT (Hann(y′[t]))|2

e[t] =
∑
ω

|(FFT (Hann(y′[t]))|2

whereZ is a normalizing constant andω sums over fre-
quency components. A filterbank of note detectors is pro-
jected onto the power FFT with each detector having a
10-peaked harmonic series:

ni[ω] =
1
Z

10∑

k=1

exp(−k)Φ(kω; 2
i
12 ω0, σ)

whereΦ(ω;µ, σ) is the Gaussian pdf,ω0 is the frequency
of the lowest considered pitch, andσ is chosen by hand
to give a reasonable spread but without interfering with
neighboring frequencies. (Ideallyσ would be derived from
acoustic theory or fit to data.)

Note detectors over a two-octave range are summed to
give a 12-valued octave-independent chromacity vector:

Ni(Y [t]) =
∑

j

〈ni+12∗j |Y [t]〉
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(b) Winner−take−all smoothed score pitches
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Figure 1. Chroma and change points of score perfor-
mance

We use an inner product between chroma vectors as an
approximate spectral likelihood (i.e. the probability of the
observed spectrum at live timet(l) given score timet(s)):

λs(Y (s)[t(s)], Y (l)[t(l)]) =
〈Y (s)[t(s)]|Y (l)[t(l)]〉√

e(s)[t(s)]e(l)[t(l)]

Energy values are normalized by local windowed (length
L) mean and variance to compute novelty features:

v[t] =
e[t]− µj=t−L:t(e[j])

σj=t−L:te[j]

We use a Gaussian approximation of energy likelihoods:

λv(v(s), v(l)) =
1
Z

exp
−(v(s) − v(l))2

2σ2
v

and assume that chroma distance and energy are sufficient
statistics for the total likelihood:

P (t(l)|t(s)) ≈ λs(Y (s)[t(s)], Y (l)[t(l)])λv(v(s)[t(s)], v(l)[t(l)])

3.3. Injecting primed particles

A fundamental assumption in Bayesian inference is that
we posses the exhaustive set of hypotheses{Hi} to ex-
plain some dataD. It is this exhaustiveness that allows us
to convert likelihoods into posterior probabilities. How-
ever in realtime score following we do not have compu-
tational resources to consider all possible score position
hypotheses, we must consider only a subset of them. Pre-
vious models have used heuristics to choose this subset:
we (with [7]) use sequential importance samples (parti-
cles) to make this choice in a principled way. The standard
particle filter assumes that the particles form the exhaus-
tive hypothesis set at each step. But this does not allow
the model to represent the possibility of its own failure: in
practice it is possible for a particle filter to get lost, and
for the best hypothesis (and even the whole area around
it) to be excluded from consideration. But the particle fil-
ter is blind to this. What we would like to do is compute
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Figure 2. Chroma and change points of live performance

the probability that all particles have failed,P (lost), and
treat ‘being lost’ as an alternative explanation. When we
know we are lost we will then consider a number of newly
injected particles{H∗

j } based on bottom-up priming, with

P (H∗
j |D,C) = P (lost|D,C)P (H∗

j |lost, D, C)

P (H∗
j |lost, D,C) =

1
Z

P ′(H∗
j |feature(D))P ′(H∗|C)

whereC is the context (i.e. the previous state for dynamic
networks like HMMs),feature(D) is some bottom-up
priming feature computed from the data, andP ′ are prob-
ability factors. In practice, all of the above terms are in-
tractable (in the sense that computing them would require
an exact solution of the very inference problem that the
particle filter is approximating) but can be approximated
from domain knowledge or historical statistics.

We estimateP (lost|D, C) by looking at a windowed
running average data likelihood. We use an exponentially
weighted moving average ofP (D[t]|Ĥ[t]), the evidence
of the MAP hypothesis at each step. When this aver-
age falls below a threshold we consider that we might
be lost with a fixed probability. In practice we approxi-
mate this by removing the worstm particles from the set
and replacing them with newly primed particles, wherem
is the number of these primes. (More detailed methods
could model how probable being lost is given how far be-
low threshold we are, and learn this model from historical
data.)

P ′(H∗
j |feature[D]) is approximated by a simple bottom-

up priming scheme. We use sparse Boolean features and
assume that all score states having the feature are equally
likely given the presence of the feature when lost. For
our score-following task, we use changes in the maxi-
mum windowed running average pitch as features. These
roughlycorrespond to onsets of new notes. We maintain
a cache of known positions of these features in the score,
and consider these positions as hypotheses when the same
features are found in a lost live performance. Speeds are
created for these particles assuming that the tempo has
been constant since the point of becoming lost.
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Figure 3. Alignment without priming.

P ′(H∗|C) can be approximated in score-following by
considering how far removed the primed hypothesis H*
is from where the particle filter’s previous MAP estimate
was, and penalizing very large jumps. Our system uses
a simple plateau function to allow only primes within a
fixed distance of the previous MAP.

Our method corresponds to altering the distribution from
which particles are sampled from in the SIR algorithm. If
we know that we are lost, prior knowledge about likely
‘primed’ positions is used to obtain a more appropriate set
of samples.’

4. RESULTS

We demonstrate the priming particle filter on the first seven
bars of theAndante Cantablefrom the Rimsky-Korsakov
Trombone Concerto. Recall that no symbolic score is re-
quired: an audio recording is used as the score. Fig. 1
shows the chroma vectors and priming features from the
audio score; fig. 2 shows the same for the live recording.

The live recording contains a short error around frame
200. Running the standard particle filter with 5 particles
results in getting lost at this point as shown in fig. 3. The
figure shows the complete spectral similarity matrix in the
background, in which the central white diagonal stripe is
the true path. The particles are plotted as dots and the
MAP particle path is drawn as a line. Fig. 4 shows the
same example running under the Priming Particle Filter.
The large jumps are where lostness recognition and prim-
ing has occurred. It can be seen that the filter gets lost
several times but is able to recover every time.

5. DISCUSSION

We have demonstrated the Priming Particle Filter on a
simple example for illustration purposes only, and run-
ning with more than 5 particles on this example generally
avoids getting lost in the first place. Our demonstration
PPF is a relatively simple score follower using very basic
likelihood features and a Markov hidden state in contrast
to state-of-the-art score followers such as [4], [6] which
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Figure 4. Alignment with priming.

have more advanced features and higher-level state mod-
els. However we suggest that all state-of-the-art models
could benefit from the simple addition of a PPF to al-
low them to recover from being lost when used by non-
professional performers.
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